Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Virol ; 97(4): e0021023, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2254654

ABSTRACT

Porcine enteric alphacoronavirus (PEAV) is a new bat HKU2-like porcine coronavirus, and its endemic outbreak has caused severe economic losses to the pig industry. Its broad cellular tropism suggests a potential risk of cross-species transmission. A limited understanding of PEAV entry mechanisms may hinder a rapid response to potential outbreaks. This study analyzed PEAV entry events using chemical inhibitors, RNA interference, and dominant-negative mutants. PEAV entry into Vero cells depended on three endocytic pathways: caveolae, clathrin, and macropinocytosis. Endocytosis requires dynamin, cholesterol, and a low pH. Rab5, Rab7, and Rab9 GTPases (but not Rab11) regulate PEAV endocytosis. PEAV particles colocalize with EEA1, Rab5, Rab7, Rab9, and Lamp-1, suggesting that PEAV translocates into early endosomes after internalization, and Rab5, Rab7, and Rab9 regulate trafficking to lysosomes before viral genome release. PEAV enters porcine intestinal cells (IPI-2I) through the same endocytic pathway, suggesting that PEAV may enter various cells through multiple endocytic pathways. This study provides new insights into the PEAV life cycle. IMPORTANCE Emerging and reemerging coronaviruses cause severe human and animal epidemics worldwide. PEAV is the first bat-like coronavirus to cause infection in domestic animals. However, the PEAV entry mechanism into host cells remains unknown. This study demonstrates that PEAV enters into Vero or IPI-2I cells through caveola/clathrin-mediated endocytosis and macropinocytosis, which does not require a specific receptor. Subsequently, Rab5, Rab7, and Rab9 regulate PEAV trafficking from early endosomes to lysosomes, which is pH dependent. The results advance our understanding of the disease and help to develop potential new drug targets against PEAV.


Subject(s)
Alphacoronavirus , Caveolae , Clathrin , Pinocytosis , Virus Internalization , rab GTP-Binding Proteins , Alphacoronavirus/physiology , rab GTP-Binding Proteins/metabolism , Endosomes/metabolism , Coronavirus Infections/metabolism , Hydrogen-Ion Concentration , Dynamins/metabolism , Caveolae/metabolism , Cholesterol/metabolism , Clathrin/metabolism , Pinocytosis/physiology , Vero Cells , Chlorocebus aethiops , Animals
2.
J Virol ; 95(24): e0134521, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1441856

ABSTRACT

Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes serious diarrhea in suckling piglets and has the potential for cross-species transmission. Although extensive studies have been reported on the biology and pathogenesis of PDCoV, the mechanisms by which PDCoV enters cells are not well characterized. In this study, we investigated how PDCoV enters IPI-2I cells, a line of porcine intestinal epithelial cells derived from pig ileum. Immunofluorescence assays, small interfering RNA (siRNA) interference, specific pharmacological inhibitors, and dominant negative mutation results revealed that PDCoV entry into IPI-2I cells depended on clathrin, dynamin, and a low-pH environment but was independent of caveolae. Specific inhibition of phosphatidylinositol 3-kinase (PI3K) and the Na+/H+ exchanger (NHE) revealed that PDCoV entry involves macropinocytosis and depends on NHE rather than on PI3K. Additionally, Rab5 and Rab7, but not Rab11, regulated PDCoV endocytosis. This is the first study to demonstrate that PDCoV uses clathrin-mediated endocytosis and macropinocytosis as alternative endocytic pathways to enter porcine intestinal epithelial cells. We also discussed the entry pathways of PDCoV into other porcine cell lines. Our findings reveal the entry mechanisms of PDCoV and provide new insight into the PDCoV life cycle. IMPORTANCE An emerging enteropathogenic coronavirus, PDCoV, has the potential for cross-species transmission, attracting extensive attenuation. Characterizing the detailed process of PDCoV entry into cells will deepen our understanding of the viral infection and pathogenesis and provide clues for therapeutic intervention against PDCoV. With the objective, we used complementary approaches to dissect the process in PDCoV-infected IPI-2I cells, a line of more physiologically relevant intestinal epithelial cells to PDCoV infection in vivo. Here, we demonstrate that PDCoV enters IPI-2I cells via macropinocytosis, which does not require a specific receptor, and clathrin-mediated endocytosis, which requires a low-pH environment and dynamin, while a caveola-mediated endocytic pathway is used by PDCoV to enter swine testicular (ST) cells and porcine kidney (LLC-PK1) cells. These findings provide a molecular detail of the cellular entry pathways of PDCoV and may direct us toward novel antiviral drug development.


Subject(s)
Coronavirus Infections/virology , Deltacoronavirus/physiology , Dynamins/metabolism , Endocytosis , Epithelial Cells/virology , Animals , Cell Line , Cell Survival , Clathrin/metabolism , Coronavirus/genetics , Hydrogen-Ion Concentration , Ileum/virology , Kidney/virology , Phosphatidylinositol 3-Kinases/metabolism , Pinocytosis , RNA, Small Interfering/metabolism , Swine , Swine Diseases/virology , Virus Internalization , rab5 GTP-Binding Proteins/metabolism
3.
Viruses ; 12(7)2020 07 03.
Article in English | MEDLINE | ID: covidwho-636175

ABSTRACT

Chikungunya virus (CHIKV) is an enveloped virus that enters host cells and transits within the endosomes before starting its replication cycle, the precise mechanism of which is yet to be elucidated. Endocytosis and endosome acidification inhibitors inhibit infection by CHIKV, murine leukemia virus (MLV), or SARS-coronavirus, indicating that these viral entries into host cells occur through endosomes and require endosome acidification. Although endosomal cathepsin B protease is necessary for MLV, Ebola virus, and SARS-CoV infections, its role in CHIKV infection is unknown. Our results revealed that endocytosis inhibitors attenuated CHIKV-pseudotyped MLV vector infection in 293T cells but not in TE671 cells. In contrast, macropinocytosis inhibitors attenuated CHIKV-pseudotyped MLV vector infection in TE671 cells but not in 293T cells, suggesting that CHIKV host cell entry occurs via endocytosis or macropinocytosis, depending on the cell lines used. Cathepsin B inhibitor and knockdown by an shRNA suppressed CHIKV-pseudotyped MLV vector infection both in 293T and TE671 cells. These results show that cathepsin B facilitates CHIKV infection regardless of the entry pathway.


Subject(s)
Cathepsin B/metabolism , Chikungunya Fever/pathology , Chikungunya virus/physiology , Viral Envelope Proteins/metabolism , Virus Internalization , Cathepsin B/antagonists & inhibitors , Cell Line, Tumor , Endocytosis/physiology , Endosomes/virology , HEK293 Cells , HeLa Cells , Humans , Leukemia Virus, Murine/physiology , Pinocytosis/physiology , RNA Interference , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL